We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Tate-Hochschild cohomology, the singularity category and applications

Formale Metadaten

Titel
Tate-Hochschild cohomology, the singularity category and applications
Serientitel
Anzahl der Teile
16
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Following work of Buchweitz, one defines Tate-Hochschild cohomology of an algebra A to be the Yoneda algebra of the identity bimodule in the singularity category of bimodules. We show that Tate-Hochschild cohomology is canonically isomorphic to the ordinary Hochschild cohomology of the singularity category of A (with its canonical dg enrichment). In joint work with Zheng Hua, we apply this to prove a weakened version of a conjecture by Donovan-Wemyss which states that a complete isolated cDV singularity is determined by the derived equivalence class of the contraction algebra associated with a resolution.