We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

End-to-end differentiable learning of protein structure

Formale Metadaten

Titel
End-to-end differentiable learning of protein structure
Alternativer Titel
Machine-learned molecular models for protein structure, networks, and design
Serientitel
Anzahl der Teile
16
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The advent of a new modeling paradigm known as ‘differentiable programming’ makes possible bespoke machine-learned models of biological phenomena that are partly learned from data and partly informed by human-derived biophysical knowledge. In this talk I will describe three instantiations of this new approach for (i) de novo protein structure prediction, (ii) elucidation of the combinatorial grammar underlying metazoan signaling networks, and (iii) design of new protein function. In all cases qualitative improvements in model accuracy or speed, or both, are achieved using differentiable programming, enabling new scientific insights into biological macromolecules and the networks they comprise.