We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A review of the initial boundary problem in GR and geometric uniqueness

Formale Metadaten

Titel
A review of the initial boundary problem in GR and geometric uniqueness
Serientitel
Anzahl der Teile
13
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In the absence of time-like boundary, the classical initial value problem in GR verifies a geometric uniqueness property. In particular, isometric Cauchy data leads to (maximal globally hyperbolic) developments which are isometric. While there exists several well-posed formulation of the initial boundary value problem in GR, no such geometric uniqueness is known. This important issue was put forward by Helmut Friedrich. It is relevant not only for the local initial boundary value problem, but also for more global aspects, due to the possible breakdown of gauge choices. I will review the mathematical analysis of the initial boundary value problem in GR, with an emphasis on various aspects relevant to the geometric uniqueness problem. If time (and progress) permits, I will present work in progress with Grigorios Fournodavlos concerning an approach to the initial boundary value problem based on the wave equation satisfied by the second fundamental form of a foliation with prescribed mean curvature.