We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Comparing system of sets of lengths over finite abelian groups

Formale Metadaten

Titel
Comparing system of sets of lengths over finite abelian groups
Alternativer Titel
Comparing system of sets of lengths of monoids of zero-sum sequences over finite abelian groups
Serientitel
Anzahl der Teile
14
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
For (G,+,0) a finite abelian group and S=g1…gk a sequence over G, we denote by σ(S) the sum of all terms of S. We call |S|=k the length of the sequence. If the sum of S is 0, we say that S is a zero-sum sequence. We denote by B(G) the set of all zero-sum sequences over G. This is a submonoid of the monoid of all sequences over G. We say that a zero-sum sequence is a minimal zero-sum sequence if it cannot be decomposed into two non-empty zero-sum subsequences. In other words, this means that it is an irreducible element in B(G). For S∈B(G) we say that ℓ is a factorization-length of S if there are minimal zero-sum sequences A1,…,Aℓ over G such that S=A1…Al. We denote the set of all ℓ that are a factorization-length of S by L(S).