We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Sequence Subsums in Zero-Sum Theory

Formale Metadaten

Titel
Sequence Subsums in Zero-Sum Theory
Serientitel
Anzahl der Teile
14
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The last few years have seen the development and improvement of structural results in the area of sequence subsums over abelian groups. These results often have the flavor that either many elements can be represented as a sum of terms from a subsequence of the given sequence (possibly with length restrictions) or else the sequence must itself be highly structured. The Subsum Kneser's Theorem, giving the corresponding analog of the classical Kneser's Theorem for sumsets, is one such example. The statements of such results, particulary in their stronger forms, are often more challenging and technical in appearance, but they have been utilized to strong effect when searching for zero-sums in a variety of circumstances. In this talk, we will give an overview of several of these results, focussing on how they were successfully used in various concrete extremal problems involving zero-sums.