We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Addition theorems in Fp

Formale Metadaten

Titel
Addition theorems in Fp
Serientitel
Anzahl der Teile
14
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, we will shortly present a direct and reverse way to develop the polynomial method that relies on the Combinatorial Nullstellensatz. The direct and usual way states that a multivariate polynomial of small degree cannot vanish on a large cartesian product provided that a specified coefficient is non zero. The reverse way relies on the coefficient formula and establishes an expression for this specified coefficient. This double interpretation of the polynomial method allows to shorten the proofs of the Cauchy-Davenport and the Dias da Silva-Hamidoune theorems and a new result on the cardinality of sets of subsums. Moreover tese proofs do not require any computations and do imply the critical cases of these three problems: arithmetical progressions.