We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Counting zero-sum sequences with the polynomial method

Formale Metadaten

Titel
Counting zero-sum sequences with the polynomial method
Alternativer Titel
Counting weighted zero-sum sequences with the polynomial method
Serientitel
Anzahl der Teile
14
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Erdos-Ginzburg-Ziv (EGZ) Theorem has an elegant proof due to Bailey and Richter that employs a 1935 result of Chevalley. Chevalley’s Theorem states that the number of shared zeros of a polynomial system over a finite field is not equal to one whenever the number of variables exceeds the sum of the degrees of the polynomials. In the same year, Warning generalized Chevalley’s Theorem and gave a lower bound on the number of shared zeros in such a system so long as one exists. We discuss our generalization of Warning’s Theorem and show how we can quantitatively refine existence theorems, such as EGZ, and simultaneously include the inhomogeneous case. Specifically, we show how one can apply our theorem to recover a 2012 result of Das Adhikari, Grynkiewicz and Sun that treats an analogue of the EGZ Theorem, one in which one considers the EGZ-problem for generalized zero-sum subsequences in any finite commutative p-group. Joint work with Pete L. Clark and Aden Forrow.