We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

How effectively can a molecular switch switch? A bound from thermodynamic resource theories

00:00

Formale Metadaten

Titel
How effectively can a molecular switch switch? A bound from thermodynamic resource theories
Serientitel
Anzahl der Teile
20
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Resource theorists have racked up scores of theorems over the past decade. But can these abstract theories inform science beyond quantum information and quantum thermodynamics? Can resource theories answer other scientists’ questions about specific systems in the real physical world? We argue affirmatively, illustrating with photoisomers, or molecular switches. Photoisomers surface across nature and technologies, from our eyes to solar-fuel cells. How effectively can these switches switch? This question defies standard tools, because photoisomers are small, quantum and far from equilibrium. We answer by modeling a photoisomer within a thermodynamic resource theory. Using thermomajorization, we upper-bound the switching probability. Then, we compare the bound with detailed balance and Lindbladian evolution. Thermomajorization constrains the yield tightly if a laser barely excites the molecule, such that thermal fluctuations drive switching. We also quantify the coherence in the molecule’s postswitching electronic state. Electronic coherence cannot boost the yield in the absence of extra resources, we argue, because modes of coherence transform independently via thermal operations. This work illustrates how thermodynamic resource theories can illuminate nature, experiments, and synthetics. This work appears in "Fundamental limitations on photoisomerization from thermodynamic resource theories" and was undertaken with David Limmer.