We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Data Assimilation: a deterministic vision, theory and applications. Lecture 2: Asymptotic observers

Formale Metadaten

Titel
Data Assimilation: a deterministic vision, theory and applications. Lecture 2: Asymptotic observers
Serientitel
Anzahl der Teile
12
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The question of using the available measurements to retrieve mathematical models characteristics (parameters, boundary conditions, initial conditions) is a key aspect of the modeling objective in biology or medicine. In a stochastic/statistical framework this question is seen as an estimation problems. From a deterministic point of view, we classical talk about inverse problems as we recover classical model inputs from outputs. When considering evolution problems,this question falls in the realm of data assimilation that can be seen from a deterministic of statistical point of view. Our objective in this course is to introduce the mathematical principles and numerical aspects behind data assimilation strategies with an emphasis on the deterministic formalism allowing to understand why data assimilation is a specific inverse problem. Our presentation will include considerations on finite dimensional problems but also on infinite dimensional problems such as the ones arising from PDE models. And we will illustrate the course with numerous examples coming from cardiovascular applications and biology.