We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Metropolis Hastings algorithm: introduction and optimal scaling of the transient phase

Formale Metadaten

Titel
The Metropolis Hastings algorithm: introduction and optimal scaling of the transient phase
Serientitel
Anzahl der Teile
31
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We first introduce the Metropolis-Hastings algorithm. We then consider the Random Walk Metropolis algorithm on Rn with Gaussian proposals, and when the target probability measure is the n-fold product of a one dimensional law. It is well-known that, in the limit n tends to infinity, starting at equilibrium and for an appropriate scaling of the variance and of the timescale as a function of the dimension n, a diffusive limit is obtained for each component of the Markov chain. We generalize this result when the initial distribution is not the target probability measure. The obtained diffusive limit is the solution to a stochastic differential equation nonlinear in the sense of McKean. We prove convergence to equilibrium for this equation. We discuss practical counterparts in order to optimize the variance of the proposal distribution to accelerate convergence to equilibrium. Our analysis confirms the interest of the constant acceptance rate strategy (with acceptance rate between 1/4 and 1/3).