We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

PIRA: Performance Instrumentation Refinement Automation

Formale Metadaten

Titel
PIRA: Performance Instrumentation Refinement Automation
Serientitel
Anzahl der Teile
287
Autor
Mitwirkende
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
PIRA is a tool to automatically filter and focus Score-P's profiling to relevant program regions. This involves both static, i.e., source-code feature, and dynamic, i.e., runtime information, analysis. It uses the whole-program call-graph representation MetaCG for its analyses and has been used for automatic (a) hot-spot detection and refinement, (b) scalability analysis, (c) kernel identification, and (d) MPI load-imbalance detection. In this talk, we present an overview of MetaCG and PIRA together with its analyses and a focus on the most recent addition of automatic (MPI) load-imbalance detection. Our experiments on the SPEC CPU 2006 suite show that PIRA automatically constructs overview measurements with runtime overhead < 10%. For the load-imbalance detection, our experiments on MPI-parallel LULESH and the Ice-sheet and Sea-level System Model~(ISSM) show that PIRA keeps the runtime overhead below 15%, while correctly identifying the existing load imbalances.