We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Automatic thresholding method for the wake detection – comparison of the methods

Formale Metadaten

Titel
Automatic thresholding method for the wake detection – comparison of the methods
Untertitel
The demonstration runs over 600 lidar scans, no post-processing was involved
Autor
Mitwirkende
Lizenz
CC-Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produktionsjahr2021
ProduktionsortBergen, Norway

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Development of an image processing method for wake meandering studies and its application on data sets from scanning wind lidar and large-eddy simulation. Wind Energy Science Wake meandering studies require knowledge of the instantaneous wake shape and its evolution. Scanning lidar data are used to identify the wake pattern behind offshore wind turbines but do not immediately reveal the wake shape. The precise detection of the wake shape and centerline helps to build models predicting wake behavior. The conventional Gaussian fit methods are reliable in the near-wake area but lose precision with the distance from the rotor and require good data resolution for an accurate fit. The thresholding methods usually imply a fixed value or manual selection of a threshold, which hinders the wake detection on a large data set. We propose an automated thresholding method for the wake shape and centerline detection, which is less dependent on the data resolution and can also be applied to the image data. We show that the method performs reasonably well on large-eddy simulation data and apply it to the data set containing lidar measurements of the two wakes. Along with the wake detection method, we use image processing statistics, such as entropy analysis, to filter and classify lidar scans. The image processing method is developed to reduce dependency on the supplementary reference data such as wind speed and direction. We show that the centerline found with the image processing is in a good agreement with the manually detected centerline and the Gaussian fit method. We also discuss a potential application of the method to separate the near and far wakes and to estimate the wake direction.
Schlagwörter