We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Bordered Heegaard-Floer homology, category O, and higher representation theory

Formale Metadaten

Titel
Bordered Heegaard-Floer homology, category O, and higher representation theory
Serientitel
Anzahl der Teile
12
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Alexander polynomial for knots and links can be interpreted as a quantum knot invariant associated with the quantum group of the Lie superalgebra \mathfrak{gl}(1|1). This polynomial has been famously categorified to a link homology theory, knot Floer homology, defined within the theory of Heegaard-Floer homology. Andy Manion showed that the Ozsvath-Szabo algebras used to efficiently compute knot Floer homology categorify certain tensor products of \mathfrak{gl}(1|1) representations. For representation theorists, the work of Sartori provides a different categorification of these same tensors products using subquotients of BGG category \mathcal{O}. In this talk we will explain joint work with Andy Manion establishing a direct relationship between these two constructions. Given the radically different nature of these two constructions, transporting ideas between them provides a new perspective and allows for new results that would not have been apparent otherwise.