We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Exciting Adventures in Crime Linkage

Formale Metadaten

Titel
Exciting Adventures in Crime Linkage
Alternativer Titel
Spatial event hotspot prediction using multivariate Hawkes features
Serientitel
Anzahl der Teile
13
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We present a model to predict spatial hotspots, defined as the regions in a future time period that have the highest proportion of events of interest. We assume the conditional intensity of the events of interest can be influenced by geospatial and temporal predictors as well as nearby events from other point processes, a common assumption in crime and conflict processes. Likewise, our model explicitly incorporates the characteristics of the spatial environment, temporal trends, and estimates the influence of past events. As a variation on traditional self-exciting (Hawkes) point process models, we directly model the probability that a location will be a member of the hotspot in a future time period. We use a penalized logistic regression model that allows the spatial covariates and each event type to have a different effect (including inhibition) on the probability. The duration of an event's influence is modeled by a mixture of decay functions resulting in a flexible and interpretable dependence structure.