We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

PCM-TV-TFV: A Novel Two-Stage Framework for Image Reconstruction from Fourier Data

Formale Metadaten

Titel
PCM-TV-TFV: A Novel Two-Stage Framework for Image Reconstruction from Fourier Data
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We propose in this paper a novel two-stage projection correction modeling (PCM) framework for image reconstruction from (nonuniform) Fourier measurements. PCM consists of a projection stage (P-stage) motivated by the multiscale Galerkin method and a correction stage (C-stage) with an edge guided regularity fusing together the advantages of total variation and total fractional variation. The P-stage allows for continuous modeling of the underlying image of interest. The given measurements are projected onto a space in which the image is well represented. We then enhance the reconstruction result at the C-stage that minimizes an energy functional consisting of a delity in the transformed domain and a novel edge guided regularity. We further develop ecient proximal algorithms to solve the corresponding optimization problem. Various numerical results in both one-dimensional signals and two-dimensional images have also been presented to demonstrate the superior performance of the proposed two-stage method to other classical one-stage methods. This is a joint work with Yue Zhang (now at Siemens Corporate Research) and Guohui Song (Clarkson University).