We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Continuous Limits of Discrete Processes

Formale Metadaten

Titel
Continuous Limits of Discrete Processes
Alternativer Titel
Discrete processes and their continuous limits
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The possibility that a discrete process can be closely approximated by a continuous one, with the latter involving a differential system, is fascinating. Important theoretical insights, as well as significant computational efficiency gains may lie in store. A great success story in this regard are the Navier-Stokes equations, which model many phenomena in fluid flow rather well. Recent years saw many attempts to formulate more such continuous limits, and thus harvest theoretical and practical advantages, in diverse areas including mathematical biology, image processing, game theory, computational optimization, and machine learning. Caution must be applied as well, however. In fact, it is often the case that the given discrete process is richer in possibilities than its continuous differential system limit, and that a further study of the discrete process is practically rewarding. I will show two simple examples of this. Furthermore, there are situations where the continuous limit process may provide important qualitative, but not quantitative, information about the actual discrete process. I will demonstrate this as well and discuss consequences.