We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Mathematical Modeling of Cell Shape and Collective Endothelial Cell Behavior due to cell-ECM cross-talk

Formale Metadaten

Titel
Mathematical Modeling of Cell Shape and Collective Endothelial Cell Behavior due to cell-ECM cross-talk
Alternativer Titel
Mathematical modeling of cell shape and collective cell behavior due to cell-ECM cross-talk
Serientitel
Anzahl der Teile
32
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
To form patterns in vivo or in vitro, cells must carefully coordinate their behavior. Here I will present mathematical modeling approaches for modeling cell-ECM cross-talk. The models predict how the ECM can regulate the shape of individual cells, and how it can coordinate collective cell behavior as it occurs, e.g., during the formation of blood vessels or the alignment of cells in muscles and tendons. After discussing these initial models, I will show how detailed measurements and new mathematical models of the mechanosensitive kinetics of focal adhesions have helped us to model cell-ECM interactions in more biophysical detail. I will sketch how this approach allows us to mechanistically predict changes in cell shape and in collective cell behavior from changes in focal adhesion kinetics, e.g., due to genetic knockouts or pharmacological treatment. I will end by showing our recent steps to include anisotropy of the cytoskeleton into our models. Altogether, our models help explain how local, cell-ECM interactions assist in global coordination of cell behavior during multicellular patterning.