We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Quantitative frameworks for understanding cancer cell invasion through in-vitro scratch assays

Formale Metadaten

Titel
Quantitative frameworks for understanding cancer cell invasion through in-vitro scratch assays
Serientitel
Anzahl der Teile
32
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Scratch assays are standard in-vitro experimental methods for studying cell migration. In these experiments, a scratch is made on a cell monolayer and imaging of the recolonisation of the scratched region is performed to quantify cell migration rates. This experimental technique is commonly used in the pharmaceutical industry to identify new compounds that may promote cell migration in wound healing; and to evaluate the efficacy of potential drugs that inhibit cancer invasion. Two mathematical frameworks will be presented that analyse the dynamics of these experiments. First, a new migration quantification method will be presented that fits experimental data more closely than existing quantification methods, as well as providing a more accurate statistical classification of the migration rate between different assays. Moreover, it is also able to analyse experimental data of lower quality. The method’s robustness is validated using in-vitro and in-silico data. Then, an age-structured population model will be presented that aims to explain the two phases of proliferation in scratch assays previously observed experimentally. The cell population is modelled by a McKendrick-von Foerster partial differential equation. The conditions under which the model captures this two-phase behaviour are presented.