We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Strong Sobolev instability of quasi-periodic solutions of the 2D cubic Schrödinger equation

Formale Metadaten

Titel
Strong Sobolev instability of quasi-periodic solutions of the 2D cubic Schrödinger equation
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We consider the defocusing cubic nonlinear Schrödinger equation (NLS) on the two-dimensional torus. This equation admits a special family of elliptic invariant quasiperiodic tori called finite-gap solutions. These solutions are inherited from the integrable 1D model (cubic NLS on the circle) by considering solutions that depend only on one variable. We study the long-time stability of such invariant tori for the 2D NLS model and show that, under certain assumptions and over sufficiently long timescales, they exhibit a strong form of transverse instability in Sobolev spaces H^s(T^2) (0 < s < 1). More precisely, we construct solutions of the 2D cubic NLS that start arbitrarily close to such invariant tori in the H^s topology and whose H^s norm can grow by any given factor. In my talk, I will also say some words about the ongoing work concerning Sobolev instability of more general 2D quasi-periodic solutions. The subject of this talk is partly motivated by the problem of infinite energy cascade for 2D NLS, and it is a joint work with M. Guardia, Z. Hani, A. Maspero and M. Procesi.