We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Rational normal forms and stability of small solutions to nonlinear Schrödinger equations

00:00

Formale Metadaten

Titel
Rational normal forms and stability of small solutions to nonlinear Schrödinger equations
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Considering general classes of nonlinear Schrödinger equations on the circle with nontrivial cubic part and without external parameters, I will present the construction a new type of normal forms, namely rational normal forms, on open sets surrounding the origin in high Sobolev regularity. With this new tool we prove that, given a large constant M and a sufficiently small parameter \varepsilon$, for generic initial data of size \varepsilon, the flow is conjugated to an integrable flow up to an arbitrary small remainder of order \varepsilon^{M+1}. This implies that for such initial data u(0) we control the Sobolev norm of the solution u(t) for time of order \varepsilon^{-M}. Furthermore this property is locally stable: if v(0) is sufficiently close to u(0) (of order \varepsilon^{3/2}) then the solution v(t) is also controled for time of order $\varepsilon^{-M}. This is a joint work with Erwan Faou and Benoît Grébert.