We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Survival Dynamical Systems: Individual-level survival analysis from population-level transmission models

Formale Metadaten

Titel
Survival Dynamical Systems: Individual-level survival analysis from population-level transmission models
Alternativer Titel
Population-level survival analysis from individual-level transmission models
Serientitel
Anzahl der Teile
19
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In a recent paper KhudaBukhsh et al., we showed that solutions to Ordinary Differential Equations (ODEs) describing the large-population limits of Markovian stochastic compartmental dynamical systems can be interpreted as survival or hazard functions when analyzing data from individuals sampled from the population. An earlier paper by Kenah showed that likelihoods from individual-level mass-action transmission models simplify in the limit of a large population when the depletion of susceptibles is negligible. In this paper, we unify and generalize these results by deriving population-level survival and hazard functions from explicit individual-level models. This allows population-level survival analysis to be applied to a more general class of epidemic models and allows the asymptotic pairwise likelihoods to be applied throughout the course of an epidemic. In practice, this will provide a logically consistent framework for the analysis of both high-resolution outbreak investigations or household studies and population-level surveillance or sentinel data.