We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Quenched and annealed Ising models on random graphs

Formale Metadaten

Titel
Quenched and annealed Ising models on random graphs
Serientitel
Anzahl der Teile
19
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The ferromagnetic Ising model is a paradigmatic model of statistical physics used to study phase transitions in lattice systems. In this talk I shall consider the setting where the regular spatial structure is replaced by a random graph, which is often used to model complex networks. I shall treat both the case where the graph is essentially frozen (quenched setting) and the case where instead it is rapidly changing (annealed setting). I shall prove that quenched and annealed may have different critical temperatures, provided the graph has sufficient inhomogeneity. I shall also discuss how universal results (law of large numbers, central limit theorems, critical exponents) are affected by the disorder in the spatial structure. The picture that I will present emerges from several joint works, involving V.H. Can, S. Dommers, C. Giberti, R.van der Hofstad and M.L.Prioriello.