We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Smooth planar maps and Laplacian determinants

Formale Metadaten

Titel
Smooth planar maps and Laplacian determinants
Alternativer Titel
Laplacian determinants and random surfaces
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
I will discuss how dimer models and other statistical physics models are related to Laplacian determinants, both on the discrete level and on the continuum level. In particular, I will recall the geometric meaning of the so-called zeta-regularized determinant of the Laplacian, as it is defined on a compact surface, with or without boundary. Using an appropriate regularization, we find that a Brownian loop soup of intensity c has a partition function described by the (-c/2)th power of the determinant of the Laplacian. In a certain sense, this means that decorating a random surface by a Brownian loop soup of intensity c corresponds to weighting the law of the surface by the (-c/2)th power of the determinant of the Laplacian. I will then introduce a method of regularizing a unit area LQG sphere, and show that weighting the law of this random surface by the (-c'/2)th power of the Laplacian determinant has precisely the effect of changing the matter central charge from c to c'. Taken together with the earlier results, this provides a way of interpreting an LQG surface of matter central charge c as a pure LQG surface decorated by a Brownian loop soup of intensity c. This is based on joint work with Morris Ang, Minjae Park, and Joshua Pfeffer.