We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Limit shape of perfect matchings on square-hexagon lattice

Formale Metadaten

Titel
Limit shape of perfect matchings on square-hexagon lattice
Alternativer Titel
Limit shape and height fluctuations of perfect matchings on square-hexagon lattices.
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We study asymptotics of perfect matchings on a large class of graphs called the contracting square-hexagon lattice,whichis constructed row by row from either a row of a square grid or a row of a hexagonal lattice. We assign thegraph periodicedge weights with period 1*n, and consider the probability measure of perfect matchings in which theprobability of eachconfiguration is proportional to the product of edge weights. We show that the partition function ofperfect matchings onsuch a graph can be computed explicitly by a Schur function depending on the edge weights. Byanalyzing the asymptoticsof the Schur function, we then prove the Law of Large Numbers (limit shape) and the CentralLimit Theorem (convergenceto the Gaussian free field) for the corresponding height functions. We also show that thedistribution of certain type ofdimers near the turning corner is the same as the eigenvalues of Gaussian Unitary Ensemble,and explicitly study thecurve separating the liquid region and the frozen region for certain boundary conditions.