We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Six-vertex and Ashkin-Teller models: order/disorder phase transition

Formale Metadaten

Titel
Six-vertex and Ashkin-Teller models: order/disorder phase transition
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Ashkin-Teller model is a classical four-component spin model introduced in 1943. It can be viewed as a pair of Ising models tau and tau’ with parameter J that are coupled by assigning parameter U for the interaction of the products tau*tau’ at every two neighbouring vertices. On the self-dual curve sinh 2J = e^{-2U}, the Ashkin-Teller model can be coupled with the six-vertex model with parameters a=b=1, c=coth 2J and is conjectured to be conformally invariant. The latter model has a height-function representation. We show that the height at a given face diverges logarithmically in the size of the domain when c=2 and remains uniformly bounded when c>2. In the latter case we obtain a complete description of translation-invariant Gibbs states and deduce that the Ashkin-Teller model on the self-dual line exhibits the following symmetry-breaking whenever J < U: correlations of spins tau and tau’ decay exponentially fast, while the product tau*tau’ is ferromagnetically ordered. The proof uses the Baxter-Kelland-Wu coupling between the six-vertex and the random-cluster models, as well as the recent results establishing the order of the phase transition in the latter model. However, in the talk, we will focus mostly on other parts of the proof: - description of the height-function Gibbs states via height-function mappings and T-circuits, - coupling between the Ashkin-Teller and the six-vertex models via an FK-Ising-type representation of these two models. (this is joint work with Ron Peled)