We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Zigzags and the cohomology of complex manifolds

Formale Metadaten

Titel
Zigzags and the cohomology of complex manifolds
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Deligne, Griffiths, Morgan and Sullivan famously characterised the \partial\bar\partial-Lemma as by the following property: The double complex of forms decomposes as a direct sum of two kinds of irreducible subcomplexes: 'Squares' and 'dots', where only the latter contribute to cohomology. In this talk, we explore the implications of the following folklore generalisation of this: Every (suitably bounded) double complex decomposes into irreducible complexes and these are 'squares' and 'zigzags', with a dot being a zigzag of length 1. This yields insight into the structure of and relation between the various cohomology groups. Applied to complex manifolds, we obtain, among others, Serre duality for all pages of the FSS, a three space decomposition on the middle cohomology and new bimeromorphic invariants. We end the talk with several open questions.