We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Left relatively convex subgroups

Formale Metadaten

Titel
Left relatively convex subgroups
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Let G be a group and H be a subgroup of G. We say that H is left relatively convex in G if the left G-set G/H has at least one G-invariant order. When G is left orderable, this holds if and only if H is convex in G under some left ordering of G. We give a criterion for H to be left relatively convex in G that generalizes a well known criterion of Burns and Hale. We then use this criterion to show that all maximal cyclic subgroups are left relatively convex in free groups, in right-angled Artin groups, and in surface groups that are not the Klein-bottle group. The free-group case extends a result of Duncan and Howie. We show that if G is left orderable, then each free factor of G is left relatively convex in G. More generally, for any graph of groups, if each edge group is left relatively convex in each of its vertex groups, then each vertex group is left relatively convex in the fundamental group; this generalizes a result of Chiswell. Finally, we show that all maximal cyclic subgroups in locally residually torsion-free nilpotent groups are left relatively convex. This is a joint work with Yago Antolin and Warren Dicks.