We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Radon transforms supported in hypersurfaces and a conjecture by Arnold

Formale Metadaten

Titel
Radon transforms supported in hypersurfaces and a conjecture by Arnold
Serientitel
Anzahl der Teile
25
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A famous lemma in Newton's Principia says that the area of a segment of a bounded convex domain in the plane cannot depend algebraically on the parameters of the line that defines the segment. Vassiliev extended Newton's lemma to bounded convex domains in arbitrary even dimensions. In odd dimensions the volume cut out from an ellipsoid by a hyperplane depends not only algebraically but polynomially on the position of the hyperplane. Arnold conjectured in 1987 that ellipsoids in odd dimensions are the only cases in which the volume function in question is algebraic. The special case when the volume function is assumed to be polynomial was settled recently by Koldobsky, Merkurjev, and Yaskin.