We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Liquid vector spaces

Formale Metadaten

Titel
Liquid vector spaces
Serientitel
Anzahl der Teile
31
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Based on the condensed formalism, we propose new foundations for real functional analysis, replacing complete locally convex vector spaces with a variant of so-called p-liquid condensed real vector spaces, with excellent categorical properties; in particular they form an abelian category stable under extensions. It is a classical phenomenon that local convexity is not stable under extensions, so one has to allow non-convex spaces in the theory, and p-liquidity is related to p-convexity, where 0 inferior at p inferior or equal at1 is an auxiliary parameter. Strangely, the proof that the theory of p-liquid vector spaces has the desired good properties proceeds by proving a generalization over a ring of arithmetic Laurent series (joint with Dustin Clausen).