We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Every Elementary Higher Topos has a Natural Number Object

Formale Metadaten

Titel
Every Elementary Higher Topos has a Natural Number Object
Serientitel
Anzahl der Teile
31
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
One key aspect of elementary topos theory is the existence of a natural number object. While it does not exist in every elementary topos (such as finite sets) we often need it to study more advanced aspects of topos theory (such as free monoids). In this talk we see how in the higher categorical setting, the existence of a natural number object can in fact be deduced from a small list of axioms that any reasonable definition of elementary higher topos should satisfy, hence proving that every elementary higher topos has a natural number object. We will observe how the proof involves ideas from algebraic topology, elementary topos theory and homotopy type theory.