We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Higher Sheaves

Formale Metadaten

Titel
Higher Sheaves
Serientitel
Anzahl der Teile
31
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Even though on the surface the theories look similar, there are basic differences between the classical theory of 1-topoi and the theory of $\infty$-topoi. Perhaps the most important difference is that Grothendieck topologies and their associated sheafification functors do not suffice to describe all left exact localizations of a higher presheaf topos. So what is a sheaf in higher topos theory? We answer this question. We show how to generate the left exact localization of an $\infty$-topos along an arbitrary set of maps S. The associated local objects are called S-sheaves. We also describe the class of maps inverted by this localization. In the case of a higher presheaf topos we obtain a definition of higher site. In that case, if the set S contains only monomorphisms, our definition reduces to the classical notion of Grothendieck topology and Grothendieck site. Joint work with Mathieu Anel, Eric Finster, and André Joyal.