We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

MAPSPAM-C: An R package to create crop distribution maps

Formale Metadaten

Titel
MAPSPAM-C: An R package to create crop distribution maps
Serientitel
Anzahl der Teile
57
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Michiel van Dijk is a senior researcher in the international policy department at Wageningen Economic Research, Wageningen University and Research. In his presentation, Michiel’s work showed how gridded maps with information on the location of crops are essential to inform national food and agricultural policies and are an important input for land use change models. Despite rapid advancement in machine learning approaches to identify the location of crops, national and global level crop distribution maps that cover a large number of crops are not readily available yet, in particular for African countries. One of the most used sources of crop distribution information is the IFPRI Spatial Production Allocation Model (SPAM, www.mapspam.info), which presents global-level plausible spatial estimates of the location of 40 crops (groups) that represent total agricultural production. SPAM uses a cross-entropy optimization approach to allocate national and subnational crop statistics of four production systems (subsistence, low-input, high-input, irrigated), informed by spatial information on both biophysical (e.g. crop suitability) and socio-economic (e.g. accessibility) drivers of crop location. In this talk, Michiel explained the use of MAPSPAM-C, and R package that implements the SPAM procedure to create crop distribution maps and facilitates the pre-processing steps to harmonize spatial input layers and post-processing steps to create harvested area, physical area, yield and production maps. The package can be used to reproduce and validate the new generation of SPAM products and will be useful for researchers that want to create their own maps using country specific input data.
Schlagwörter