We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

High resolution predictions of potential and actual distribution of forest tree species for Europe (2000-2020) based on spatiotemporal Machine Learning

Formale Metadaten

Titel
High resolution predictions of potential and actual distribution of forest tree species for Europe (2000-2020) based on spatiotemporal Machine Learning
Serientitel
Anzahl der Teile
57
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Carmelo Bonnanella, PhD candidate & research assistant at OpenGeoHub, presented the results of modeling species distribution maps for both potential and actual natural vegetation through spatiotemporal machine learning using a data-driven, robust, objective and fully reproducible workflow. The presentation focussed on the benefits of using ensemble machine learning for species distribution modeling to capture patterns of niche changes in both space and time: yearly (from 2000 to 2020) probability distribution maps for both potential and actual natural vegetation were shown for forest tree species that live in different climatic conditions across Europe. The high spatial (30 m) and temporal (1 year) resolution of the outputs should allow us to enhance and better understand the patterns of niche change.
Schlagwörter