We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Exploring Copernicus products and machine learning for health applications

Formale Metadaten

Titel
Exploring Copernicus products and machine learning for health applications
Serientitel
Anzahl der Teile
57
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Rochelle Schneider is a Research Fellow in Artificial Intelligence for Earth Observation at European Space Agency (ESA), and she expounded the development of a multi-stage satellite-based machine learning (ML) model to estimate daily PM2.5 levels across Great Britain during 2008-2018. Stage-1 estimated PM2.5 concentrations in monitors with only PM10 records. Stage-2 imputed missing satellite aerosol-optical-depth due to cloudiness and bad retrievals. Stage-3 applied the Random Forest algorithm to estimate PM2.5 concentrations using a combined dataset from Stage-1, Stage-2, and a list of spatiotemporally synchronised predictors. Stage-4 estimated daily PM2.5 using Stage-3 model. The relatively high precision allowed these estimates (approximately 950 million points) to be used in epidemiological analyses to assess health risks associated with both short- and long-term exposure to PM2.5.
Schlagwörter