We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Creating Geo-Harmonized PM2.5 maps over Europe using machine learning

Formale Metadaten

Titel
Creating Geo-Harmonized PM2.5 maps over Europe using machine learning
Serientitel
Anzahl der Teile
57
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Saleem Ibrahim, Researcher at the CTU in Prague, presented high resolution (1 km), full coverage of inhalable particulate matter (PM2.5) maps of whole Europe for the years 2018–2020 using open-source data. This was a major finding of his study, which aims at gaining a better understanding of these small particles, one of the most harmful air pollutants to all living things. The biggest challenge is the ground measurement tools, by highly-expensive ground stations limiting the coverage of estimations. To accelerate the process and reduce costs, the work of Saleem explored the application of machine learning and deep learning algorithms to estimate PM2.5 using multiple sources like satellite retrievals of Aerosol Optical Depth (AOD) and other auxiliary data, such as meteorological data, land cover, land use, among others.
Schlagwörter