We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fast reaction limit with nonmonotone reaction function

Formale Metadaten

Titel
Fast reaction limit with nonmonotone reaction function
Serientitel
Anzahl der Teile
39
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We analyse fast reaction limit in the reaction-diffusion system \begin{align*} \partial_t u^{\varepsilon} &= \frac{v^{\varepsilon} - F(u^{\varepsilon})}{\varepsilon}, \\ \partial_t v^{\varepsilon} &= \Delta v^{\varepsilon} + \frac{F(u^{\varepsilon}) - v^{\varepsilon}}{\varepsilon}, \end{align*} with nonmonotone reaction function $F$. As speed of reaction tends to infinity, the concentration of non-diffusing component $u^{\varepsilon}$ exhibits fast oscillations. We identify precisely its Young measure which, as a by-product, proves strong convergence of the diffusing component $v^{\varepsilon}$, a result that is not obvious from a priori estimates. Our work is based on analysis of regularization for forward-backward parabolic equations by Plotnikov [2]. We rewrite his ideas in terms of kinetic functions which clarifies the method, brings new insights, relaxes assumptions on model functions and provides a weak formulation for the evolution of the Young measure.
Schlagwörter