We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Mv-strong uniqueness for density dependent, incompressible, non-Newtonian fluids

Formale Metadaten

Titel
Mv-strong uniqueness for density dependent, incompressible, non-Newtonian fluids
Serientitel
Anzahl der Teile
39
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We analyse the system of the form \begin{align*} {\partial}_t{\rho} +{\rm div \,}_x(\rho u) = 0\\ {\partial}_t(\rho u) +{\rm div \,}_x(\rho u\otimes u) + \nabla_x p = {\rm div \,}_x {\mathbb{S}}\label{secondequation}\\ {\rm div \,}_x(u) = 0 \end{align*} where $\rho$ is the mass density, $u$ denotes velocity field, ${\mathbb{S}}$ the stress tensor and $p$ is the pressure. We are interested in the measure-valued solutions to those equations and prove the mv-strong uniqueness property. This work bases its assumptions on the recent paper by Abbatiello and Feireisl [1], but differs from it in density dependency. Surprisingly the solutions are not defined by the Young measures, but by the similar tool to the so-called defect measure. BIBLIOGRAPHY [1] A. Abbatiello and E. Feireisl. On a class of generalized solutions to equations describing incompressible viscous fluids. Ann. Mat. Pura Appl. (4), 199(3):1183â 1195, 2020.
Schlagwörter