We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

What does back propagation compute?

Formale Metadaten

Titel
What does back propagation compute?
Serientitel
Anzahl der Teile
5
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We are interested in nonsmooth analysis of backpropagation as implemented in modern machine learning librairies, such as Tensorflow or Pytorch. First I will illustrate how blind application of differential calculus to nonsmooth objects can be problematic, requiring a proper mathematical model. Then I will introduce a weak notion of generalized derivative, named conservativity, and illustrate how it complies with calculus and optimization for well structured objects. We provide stability results for empirical risk minimization similar as in the smooth setting for the combination of nonsmooth automatic differentiation, minibatch stochastic approximation and first order optimization. This is joint work with Jérôme Bolte.
Schlagwörter