We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Toeplitz determinants, Painlevé equations, and special functions - Part I: an operator approach

Formale Metadaten

Titel
Toeplitz determinants, Painlevé equations, and special functions - Part I: an operator approach
Untertitel
Lecture 3
Serientitel
Anzahl der Teile
18
Autor
Mitwirkende
N. N.
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these n by n size matrices, have (in appropriate cases) an asymptotic expression that is of the form Gn×E where both G and E are constants. This expansion is useful in describing many statistical quantities variables for certain random matrix models. In other instances, where the above expression must be modified, the asymptotics correspond to critical temperature cases in the Ising Model, or to cases where the random variables are in some sense singular. Generalizations of the above result to other settings, for example, convolution operators on the line, are also important. For example, for Wiener-Hopf operators, the analogue of the determinants of finite matrices is a Fredholm determinant. These determinants are especially prominent in random matrix theory where they describe many quantities including the distribution of the largest eigenvalue in the classic Gaussian Unitary Ensemble, and in turn connections to Painleve equations. The lectures will use operator theory methods to first describe the simplest cases of the asymptotics of determinants for the convolution (both discrete and continuous) operators, then proceed to the more singular cases. Operator theory techniques will also be used to illustrate the links to the Painlevé equations.
Schlagwörter