We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

​Special manifolds, the core fibration, rational and entire curves

00:00

Formale Metadaten

Titel
​Special manifolds, the core fibration, rational and entire curves
Serientitel
Teil
21
Anzahl der Teile
29
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
For complex projective manifolds X of general type, Lang claimed the equivalence between three fields: birational geometry, complex hyperbolicity, and arithmetic. We extend this equivalence to arbitrary X’s by introducing the (antithetical) class of “Special” manifolds and constructing the “Core” fibration, the unique one with special fibres and general type “orbifold” base. We conjecture that special manifolds —which are defined algebro-geometrically by a certain non-positivity of their cotangent bundles— are also exactly the ones having Zariski-dense entire curves (so violating the GGL property). We shall give (j.w. J. Winkelmann) some examples supporting this conjecture. The arithmetic aspect will be skipped.
Schlagwörter