We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Arithmetic and algebraic hyperbolicity

Formale Metadaten

Titel
Arithmetic and algebraic hyperbolicity
Serientitel
Teil
18
Anzahl der Teile
29
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Green–Griffiths–Lang–Vojta conjectures relate the hyperbolicity of an algebraic variety to the finiteness of sets of “rational points”. For instance, it suggests a striking answer to the fundamental question “Why do some polynomial equations with integer coefficients have only finitely many solutions in the integers?”. Namely, if the zeroes of such a system define a hyperbolic variety, then this system should have only finitely many integer solutions. In this talk I will explain how to verify some of the algebraic, analytic, and arithmetic predictions this conjecture makes.
Schlagwörter