We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Skolem's conjecture and exponential Diophantine equations

Formale Metadaten

Titel
Skolem's conjecture and exponential Diophantine equations
Serientitel
Anzahl der Teile
28
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Exponential Diophantine equations, say of the form (1) $u_{1}+...+u_{k}=b$ where the $u_{i}$ are exponential terms with fixed integer bases and unknown exponents and b is a fixed integer, play a central role in the theory of Diophantine equations, with several applications of many types. However, we can bound the solutions only in case of k = 2 (by results of Gyory and others, based upon Baker’s method), for k > 2 only the number of so-called non-degenerate solutions can be bounded (by the Thue-Siegel-Roth-Schmidt method; see also results of Evertse and others). In particular, there is a big need for a method which is capable to solve (1) completely in concrete cases. Skolem’s conjecture (roughly) says that if (1) has no solutions, then it has no solutions modulo m with some m. In the talk we present a new method which relies on the principle behind the conjecture, and which (at least in principle) is capable to solve equations of type (1), for any value of k. We give several applications, as well. Then we provide results towards the solution of Skolem’s conjecture. First we show that in certain sense it is ’almost always’ valid. Then we provide a proof for the conjecture in some cases with k = 2, 3. (The handled cases include Catalan’s equation and Fermat’s equation, too - the precise connection will be explained in the talk). Note that previously Skolem’s conjecture was proved only for k = 1, by Schinzel.
Schlagwörter