We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Pseudorandomness at prime times and digits of Mersenne numbers

Formale Metadaten

Titel
Pseudorandomness at prime times and digits of Mersenne numbers
Serientitel
Anzahl der Teile
28
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We consider two common pseudorandom number generators constructed from iterations of linear and Möbius maps $x \mapsto gx$ and $ x \mapsto (ax+b)/(cx+d)$ over a residue ring modulo an integer q ≥ 2, which are known as congruential and inversive generators, respectively. There is an extensive literature on the pseudorandomness of elements $u_{n}, n=1,2,...$, of the corresponding orbits. In this talk we are interested in what happens in these orbits at prime times, that is, we study elements $u_{p}$, $p = 2, 3, . . .$, where $p$ runs over primes. We give a short survey of previous results on the distribution of $u_{p}$ for the above maps and then: - Explain how B. Kerr, L. Mérai and I. E. Shparlinski (2019) have used a method of N. M. Korobov (1972) to study the congruential generator on primes modulo a large power of a fixed prime, e.g. $q=3^{\gamma }$ with a large $\gamma$. We also give applications of this result to digits of Mersenne numbers $2^{p}-1$. - Present a result of L. Mérai and I. E. Shparlinski (2020) on the distribution of the inversive generator on primes modulo a large prime, q. The proof takes advantage of the flexibility of Heath-Brown’s identity, while Vaughan’s identity does not seem to be enough for our purpose. We also pose several open questions and discuss links to Sarnak’s conjecture on pseudorandomness of the Möbius function.
Schlagwörter