We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Supporting an Expert-centric Process of New Product Introduction With Statistical Machine Learning

Formale Metadaten

Titel
Supporting an Expert-centric Process of New Product Introduction With Statistical Machine Learning
Serientitel
Anzahl der Teile
30
Autor
Lizenz
CC-Namensnennung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Industries that sell products with short-term or seasonal life cycles must regularly introduce new products. Forecasting the demand for New Product Introduction (NPI) can be challenging due to the fluctuations of many factors such as trend, seasonality, or other external and unpredictable phenomena (e.g., COVID-19 pandemic). Traditionally, NPI is an expertcentric process. This paper presents a study on automating the forecast of NPI demands using statistical Machine Learning (namely, Gradient Boosting and XGBoost). We show how to overcome shortcomings of the traditional data preparation that underpins the manual process. Moreover, we illustrate the role of cross-validation techniques for the hyper-parameter tuning and the validation of the models. Finally, we provide empirical evidence that statistical Machine Learning can forecast NPI demand better than experts.
Schlagwörter