We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

GPU Computing Made Simple with the C++ Vulkan SDK & the C++ Kompute Framework (AMD, Qualcomm, NVIDIA & Friends)

Formale Metadaten

Titel
GPU Computing Made Simple with the C++ Vulkan SDK & the C++ Kompute Framework (AMD, Qualcomm, NVIDIA & Friends)
Serientitel
Anzahl der Teile
637
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Many advanced data processing paradigms fit incredibly well to the parallel-architecture that GPU computing offers, which has resulted in the continuously growing adoption of graphics card for general purpose computing. Exciting advancements in the open source Vulkan Project are enabling developers to take advantage of general purpose GPU computing capabilities in cross-vendor mobile and desktop GPUs including AMD, Qualcomm, NVIDIA & friends. In this talk we will learn to write GPU accelerated algorithms which will be able to run on virtually any GPU hardware, including non-NVIDIA GPUs. We'll introduce an intuition and key concepts around GPU computing, as well as show how you can get started with the Vulkan Kompute framework with only a handful of lines of C++ or Python code. Throughout the talk we will also dive into the GPU computing terminology around asynchronous & parallel workflow processing, cover the core principles of machine learning data parallelism, explain the hardware concepts of GPU queues & queueFamilies, and talk about how advancements in new and upcoming graphics cards will enable for even bigger speedups (such as the NVIDIA Ampere GA10x architecture which will support up to 3 parallel queue processing workloads).