We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Ore polynomials and applications to coding theory

Formale Metadaten

Titel
Ore polynomials and applications to coding theory
Serientitel
Anzahl der Teile
7
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In the 1930’s, in the course of developing non-commutative algebra, Ore introduced a twisted version of polynomials in which the scalars do not commute with the variable. About fifty years later, Delsarte, Rothand Gabidulin realized (independently) that Ore polynomials could be used to define codes—nowadays calledGabidulin codes—exhibiting good properties with respect to the rank distance. More recently, Gabidulincodes have received much attention because of many promising applications to network coding, distributedstorage and cryptography. The first part of my talk will be devoted to review the classical construction of Gabidulin codes and presenta recent extension due to Martinez-Penas and Boucher (independently), offering similar performances butallowing for transmitting much longer messages in one shot. I will then revisit Martinez-Penas’ and Boucher’sconstructions and give to them a geometric flavour. Based on this, I will derive a geometric description ofduals of these codes and finally speculate on the existence of more general geometric Gabidulin codes.
Schlagwörter