We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Bacterial movement by run and tumble: models, patterns, pathways, scales

Formale Metadaten

Titel
Bacterial movement by run and tumble: models, patterns, pathways, scales
Serientitel
Anzahl der Teile
19
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
At the individual scale, bacteria as E. colimove by perform-ing so-called run-and-tumble movements. This means that they alternate ajump (run phase) followed by fast re-organization phase (tumble) in whichthey decide of a new direction for run. For this reason, the population is described by a kinetic-Botlzmann equation of scattering type. Non linearityccurs when one takes into account chemotaxis, the release by the individualcells of a chemical in the environment and response by the population.These models can explain experimental observations, fit precise measure-ments and sustain various scales. They also allow to derive, in the diffusionlimit, macroscopic models (at the population scale), as the Flux-Limited-Keller-Segel system, in opposition to the traditional Keller-Segel system, thismodel can sustain robust traveling bands as observed in Adler’s famous experiment. Furthermore, the modulation of the tumbles, can be understood using intra cellular molecular pathways. Then, the kinetic-Boltzmann equation canbe derived with a fast reaction scale. Long runs at the individual scale andabnormal diffusion at the population scale, can also be derived mathematically.