We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Is Rainfall Getting Heavier? Building a Weather Forecasting Pipeline with Singapore Weather Station Data

Formale Metadaten

Titel
Is Rainfall Getting Heavier? Building a Weather Forecasting Pipeline with Singapore Weather Station Data
Untertitel
Using data-driven approaches for weather forecasting in the tropics
Serientitel
Anzahl der Teile
637
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
How many seasons does a tropical country like Singapore have? Is global warming real, and is rainfall getting heavier? To answer these questions, I will show how we could use Requests and Pandas to build a data pipeline that extracts Singapore weather station data for a user-defined time period and explore the weather trends and seasons over the past few years. Most of the world experience the four seasons, but how many seasons does a tropical country like Singapore have? Is rainfall getting heavier? We can get such insights from publicly-available weather data; however, we need to write scripts to make API requests to retrieve the data. In this talk, I will be sharing about my approach in building a data pipeline that extracts Singapore weather station data from Data.gov.sg APIs for a user-defined time period using pandas. Based on the extracted data, I will also be using a data-driven approach to gain a better understanding on the weather trends and seasons over the past few years, and explore different approaches in forecasting future weather trends based on these insights.