We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

r.accumulate: Efficient computation of hydrologic parameters in GRASS

Formale Metadaten

Titel
r.accumulate: Efficient computation of hydrologic parameters in GRASS
Untertitel
Improving the performance of geospatial computation for web-based hydrologic modeling
Serientitel
Anzahl der Teile
637
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The longest flow path is one of the most important geospatial parameters that is used for hydrologic analysis and modeling. However, there are not many available GIS tools that can compute this watershed parameter. At the same time, there have been almost little to no efforts in improving its computational efficiency since its first, to the presenter's best knowledge, introduction by Smith (1995) when the geospatial data resolution was relatively coarser. In this talk, the presenter introduces a new algorithm that applies Hack's law to the discovery of the longest flow path and its efficient implementation as a GRASS module called r.accumulate. He compares its performance to that of commercial ArcHydro's Longest Flow Path tool. Lastly, he introduces a proof-of-concept version of the Web-based Hydrologic Modeling System (WHydroMod) built using GRASS, PyWPS, MapServer, and OpenLayers, and discusses how r.accumulate can be used to improve the efficiency of geospatial computation for WHydroMod.