We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Introducing LSM-tree into PostgreSQL, making it as a data gobbler

Formale Metadaten

Titel
Introducing LSM-tree into PostgreSQL, making it as a data gobbler
Serientitel
Anzahl der Teile
32
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Data storage engine is always the key to the performance of a database system. Traditionally, storage engine is implemented based on B+-tree or B-tree. Compared to traditional B+tree or B-tree, LSM-tree as another important data structure, recently attracts great attention from developers due to its wide usage in many open source projects including in web browsers and many data processing systems. There are some well-known incarnation of LSM-tree, such as LevelDB and RocksDB to make the index practical in the industry. Now, we bring it to the world of PostgreSQL. Users can utilize LSM-tree via Postgres‘ FDW through our implementation. So in the talk, we will cover these contents: 1. The motivation of introducing LSM-tree 2. How does LSM-tree work? 3. How does the specific implementation of LSM-tree work, such as LevelDB and RocksDB? What is their architecture? 4. How do we incorporate these existing LSM-tree implementations? 5. Some experiment results